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Abstract. Theoretical investigations of dynamical behavior in optical parametric oscillators (OPO) have
generally assumed that the cavity detunings of the interacting fields are controllable parameters. However,
OPOs are known to experience mode hops, where the system jumps to the mode of lowest cavity detuning.
We note that this phenomenon significantly limits the range of accessible detunings and thus may prevent
instabilities predicted to occur above a minimum detuning from being evidenced experimentally. As a
simple example among a number of instability mechanisms possibly affected by this limitation, we discuss
the Hopf bifurcation leading to periodic behavior in the monomode mean-field model of a triply resonant
OPO and show that it probably can be observed only in very specific setups.

PACS. 42.65.-k Nonlinear optics – 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, op-
tical chaos and complexity, and optical spatio-temporal dynamics – 42.65.Yj Optical parametric oscillators
and amplifiers

1 Introduction

Continuous-wave optical parametric oscillators (OPOs)
are tunable sources of coherent light that have proved ex-
tremely useful in quantum optics or high resolution spec-
troscopy [1]. They also have attracted great interest as
model systems in nonlinear dynamics because they are
based on the simplest optical nonlinearity, three-wave mix-
ing, and are expected to exhibit complex dynamical be-
havior in some regions of parameter space. Indeed, many
theoretical studies have predicted a variety of complex
temporal and spatio-temporal dynamics (see, e.g., [2–10]).
In particular, the simplest model of a triply resonant OPO
(TROPO), the degenerate monomode mean-field model,
was shown twenty-five years ago to display a Hopf bifurca-
tion leading to periodic behavior [2,3], and later to exhibit
deterministic chaos [4]. Quite surprisingly, this instability
has to our knowledge not yet been observed experimen-
tally. Although oscillatory behaviors have been reported
in several experiments [11–14], they have been shown to
stem either from thermal effects [12,13] or from the in-
teraction of transverse modes [14]. Very recently, chaotic
behavior has been evidenced in a TROPO [15] but is be-
lieved to be also linked to multimode operation.

The most important control parameters controlling
the appearance of instabilities in OPOs are probably the
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pumping rate and the cavity detunings. Indeed, a higher
pumping rate implies stronger nonlinearities and non-zero
detunings increase the effective number of dynamical vari-
ables. As a matter of fact, most instabilities investigated
theoretically have usually been described at large values
of the pumping rate and for cavity detunings significantly
above zero (for example, several numerical simulations of
pattern-forming instabilities shown in [5–9] use signal de-
tuning values slightly or well above the cavity resonance
half-width).

As pumping rate is obviously limited by the power of
the pump laser, it would only be natural to identify it
as the limiting factor when searching for instabilities [10].
As for detunings, they are generally considered as param-
eters that can be easily tuned so as to pull the system
away from equilibrium and observe complex behaviors.
However, there are two limitations on the values that cav-
ity detunings can take. The first is simply that the OPO
threshold increases quadratically with detuning, and thus
that operation is restricted to detuning values for which
threshold power remains below available pump power. The
second arises because of a phenomenon known as mode
hopping: OPOs spontaneously choose their operation fre-
quency so as to operate on the cavity mode with smallest
detuning. As the OPO is pulled away from a cavity reso-
nance in order to increase detuning, a more favorable oper-
ating point appears near another cavity resonance and the
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system jumps to it. Because mode hops in OPOs occur for
variations of cavity length as small as a few nanometers,
they make it difficult to stabilize doubly or triply resonant
OPO and to achieve smooth tuning [16–19]. Here, our con-
cern is that mode hops prevent the OPO from achieving
high values of the detunings and thus restraint the param-
eter range that can be explored. Such a limitation might
very well preclude the experimental observation of dynam-
ical behaviors predicted theoretically.

In this paper, we discuss this problem in a simple ex-
ample, the Hopf bifurcation that leads to periodic behav-
ior in the monomode mean-field model of a TROPO. We
show that mode selection in OPOs indeed prevents ex-
perimental observation of this instability in most practi-
cable configurations. We first recall the basic properties
of the monomode mean-field TROPO model and the con-
ditions under which the Hopf bifurcation occurs. In the
limit of infinite pump power, a simple lower bound for
signal detunings at which the Hopf bifurcation can occur
is easily obtained, which confirms that this bifurcation re-
quires high values of the signal detuning. In a second part
we derive the expression of the maximal value that signal
detuning can reach before a mode hop occurs, which de-
pends on the length and finesse of the cavity as well as on
crystal birefringence. By comparing the two bounds and
searching for parameter regions where they are compati-
ble, we find that mode hops generally keep the TROPO
away from parameter ranges where the Hopf bifurcation
can be observed, unless very high-finesse and very short
cavities are used, which would make operation extremely
difficult. This is confirmed by a numerical exploration at
finite pump power of the parameter space of this model
for various values of the cavity finesse. It shows that mode
hopping rather than pump power is the limiting factor in
order to reach instability. This result provides a plausi-
ble explanation of the fact that the Hopf bifurcation of
the monomode TROPO has not yet been observed exper-
imentally. It also calls for further investigations in order
to determine whether mode hopping also interferes with
other predicted instabilities.

2 TROPO degenerate monomode mean-field
model: Hopf instability

We now recall the main features of the simplest TROPO
model, the degenerate longitudinally and transversely
monomode mean-field model [2–4]. Light generation in
an optical parametric oscillator is based on parametric
down-conversion in a nonlinear crystal of a pump photon
into two lower-frequency photons called signal and idler.
In a TROPO, the optical cavity enclosing the crystal is
resonant for all three fields so as to minimize operation
threshold. In the mean-field (a.k.a. uniform-field) approx-
imation, the time evolution of the normalized amplitudes
As, Ai and Ap of the signal, idler and pump fields inside
the cavity can be described by the following differential

equations [4]:

Ȧs = −(1 + i∆s)As + A∗
i Ap, (1a)

Ȧi = −(1 + i∆i)Ai + A∗
sAp, (1b)

Ȧp = γ [−(1 + i∆p)Ap − AsAi + E] , (1c)

where ∆s, ∆i and ∆p are the detunings between the opti-
cal frequency and the frequency of the closest cavity res-
onance for the signal, idler and pump fields, respectively,
and E is the pumping rate. The time unit is the cavity de-
cay time of the signal field and γ is the cavity decay rate
for the pump. In this paper we focus on the stationary
regimes of equations (1), and are interested in determin-
ing when they become unstable to give birth to periodic
oscillations depending on values of control parameters.

A little known property of equations (1) is that al-
though the signal and idler fields are in principle distinct,
their time evolution can be described by a single amplitude
after transients have died out. First it should be noted
that stationary solutions of equations (1) exist only for
∆s = ∆i, a relation that can be shown to follow from pho-
ton number conservation [20]. Replicating a similar calcu-
lation carried out in the analysis of a bimode model [21],
it is then easy to show that equations (1a) and (1b) imply
that after a sufficiently long time, the amplitudes As and
Ai are equal up to a constant phase difference that can al-
ways be removed by a redefinition of the amplitudes. This
is obviously linked to the fact that signal and idler pho-
tons are twin photons created in the same quantum pro-
cess. Without loss of generality, the asymptotic dynamics
of the TROPO can then be modeled by the following nor-
malized equations (degenerate model) describing the time
evolution of the complex amplitude of the signal field As

and of the pump field Ap [4]:

Ȧs = −(1 + i∆s)As + A∗
sAp, (2a)

Ȧp = γ
[−(1 + i∆p)Ap − A2

s + E
]
. (2b)

For pumping rates above the parametric emission thresh-
old given by

E2
th = (1 + ∆2

p)(1 + ∆2
s), (3)

equations (2) have non-zero stationary solutions which
have been shown to fit accurately experimental observa-
tions in the vicinity of threshold [11]. When pump rate
is increased, these stationary solutions can become unsta-
ble through a Hopf bifurcation giving rise to oscillatory
behavior [2–4]. A necessary condition for this bifurcation
is [4]

∆p∆s < −
[

1 +
γ(1 + ∆2

p)
2

]

, (4)

which ensures that there is a finite pump rate EH > Eth

at which the stationary nonzero solution bifurcates to a
periodic solution, which is is given by [4]

E2
H =

⎡

⎣ γ2(1 + ∆2
p) + 4(1 + γ)

−2(1 + γ)2[1 + 2(1+∆p∆s)
γ(1+∆2

p) ]
− (∆p∆s − 1)

⎤

⎦

2

+(∆p + ∆s)2, (5)
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Fig. 1. Map (∆p, ∆s) for different values of the parameter γ.
The curves delimits the areas for which condition (4) is fulfilled.

At higher pump rates, the limit cycle born in the Hopf
bifurcation undergoes a period-doubling cascade leading
to chaos [4].

As inequality (4) is closer and closer to equality, the
Hopf threshold EH given by (5) becomes larger and larger
and is eventually rejected to infinity. For a given maximal
pump rate available, Emax, whether the instability can be
observed at fixed detunings inside the parameter domain
delimited by (4) is determined by the inequality Emax >
EH(∆p, ∆s). Since we are interested here in specifying the
unstable region by simple bounds on the detunings, we
first assume that we have infinite pump power available.
Under this approximation, whose validity will be checked
in numerical simulations in Section 4, the Hopf instability
domain is solely determined by inequality (4).

The instability domains in the (∆p, ∆s) plane have
been plotted in Figure 1 for different values of γ, and
are seen to be bounded away from the origin. Along their
boundaries, (4) is an equality and defines the signal de-
tuning as a function of pump detuning. It is easily found
that the minimum absolute value that the signal detun-
ing can take on the boundary, and hence in the instability
domain, is:

∆H
min = min{|∆s|} =

√
γ(γ + 2), (6)

and is obtained for |∆p| =
√

(2 + γ)/γ. Note that ∆H
min is

roughly proportional to γ and thus increases with it.
Since (4) still holds at finite pump power, the lower

bound provided by (6) is always valid. This clearly shows
that the Hopf bifurcation of the monomode degenerate
mean-field model can only occur for sufficiently high signal
detunings. In the next section, we describe the process of
mode hopping and how it limits the values that signal
detunings can take leading to a maximal absolute value
for the detunings. Whether the two constraints can be
satisfied simultaneously will eventually determine whether
the Hopf bifurcation can be observed experimentally.

3 Limitation of signal detuning due to mode
hopping

3.1 Theory

In the theoretical analysis of Section 2, it was assumed
that the frequency detuning of the signal field is a fixed
parameter. This is however not entirely true, because the
operating frequency of an OPO is not actually chosen by
the experimentalist but results from a complex mode se-
lection process. While small variations of the cavity length
most often modify frequency and hence detuning gradu-
ally, sudden jumps will occur when a remote operating
point becomes more favorable. As we discuss below, this
process tends to minimize frequency detuning and conse-
quently to limit its maximum value, which can be derived
analytically.

As with any optical oscillator where an amplifying
medium is enclosed inside an optical cavity, there are two
main constraints that determine the operating conditions
of an OPO: the first one is that the gain in the amplifying
medium must be sufficient to overcome cavity losses over
each round trip in the cavity, the second one is that the
generated field must be nearly resonant with one of the
cavity modes so that amplification by the gain medium is
cumulative over successive round trips.

In optical parametric oscillators, the nonlinear inter-
action is optimal when the relative phases of the three
interacting waves remain fixed during propagation. The
phase-matching condition is easily formulated in a cor-
puscular point of view: the conversion of one pump pho-
ton into signal and idler photons must satisfy energy and
momentum conservation:

ωp = ωs + ωi (7a)
kp = ks + ki (7b)

where ωp,s,i and kp,s,i denote the frequencies and the
wavevectors of the pump, signal and idler fields.

The pump properties being fixed, relations (7) gen-
erally single out unique values for the signal and idler
frequencies and much of OPO design consists in ensur-
ing that these values fall in the desired frequency range.
However, while energy conservation (7a) strictly holds for
continuous-wave OPOs, momentum conservation may be
satisfied only approximately because of the finite size of
the nonlinear crystal. Thus there is a small but finite
frequency domain around the exact phase-matching fre-
quency where the nonlinear gain is adequate for OPO op-
eration. It is usually the case that many cavity resonances
fall inside this domain, and an important problem is to de-
termine the resonances near which oscillation will actually
occur.

Monomode optical parametric oscillators behave as
homogeneously broadened lasers in that when there are
several frequencies for which gain overcome losses in the
empty cavity, the one with the lowest threshold takes over
by saturating the gain in such a way that competing modes
remain below threshold. Mode selection thus amounts to
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determining which operating modes have lowest thresh-
old. If variation of raw gain in the domain around perfect
phase-matching is neglected, and considering pump de-
tuning as a fixed parameter, this is equivalent to finding
the allowed operating frequencies for signal and idler fields
that have lowest frequency detuning, as expression (3) for
parametric threshold shows.

In doubly and triply resonant OPOs, this problem is
made difficult by the fact that the signal and idler fields
must be simultaneously resonant. Thus operation can only
take place at coincidences between two frequency combs.
In general the two combs have different periods, either
because the signal and idler fields have very different
frequencies or because they are polarized along different
axes of a birefringent crystal (the so-called type-II phase-
matching [22]). A singular configuration that we will not
consider here is when signal and idler have identical polar-
izations and frequencies (type-I phase matching at degen-
eracy). As a result, frequency tuning in OPOs is a compli-
cated problem that has been studied very carefully both
in the type-I and type-II cases [16,17].

The detunings of the signal and the idler fields are
given respectively by ∆ωs = ωs −ωR

s and ∆ωi = ωi −ωR
i ,

where ωs and ωi are the optical frequencies of the signal
and idler fields and ωR

s and ωR
i are the closest resonance

frequencies of the cavity. For the sake of simplicity, we
assume in the following that ωs and ωi are close to a 1:1
ratio but the argument can be generalized easily to any
rational number.

Taking energy conservation (7a) into account, the total
frequency mismatch ∆ω = ∆ωs + ∆ωi for the signal-idler
mode pair is given by:

∆ω = ωp − ωR
s − ωR

i , (8)

which does not depend of the specific oscillation frequen-
cies ωs and ωi chosen by the system, but only of the pump
frequency and the resonance frequencies of the cavity for
the signal and the idler modes. For our purposes, ∆ω is
the relevant quantity to consider as the individual detun-
ings ∆ωs and ∆ωi are proportional to it in a stationary
state, as a consequence of energy and photon number con-
servation [20]. The mode pair selected by the OPO will be
the one that minimizes the total frequency mismatch ∆ω
so as to minimize threshold.

Taking into account that ωR
s and ωR

i belong to two
frequency combs specified by the free spectral ranges δωs

and δωi:
ωR

s = Nsδωs, ωR
i = Niδωi (9)

where Ns and Ni are the mode indices, and having in mind
that |δωs − δωi| � δωs, δωi, we rewrite (8) as

∆ω = ωp − N̄(δωs + δωi) − ∆N(δωs − δωi) (10)

with N̄ = (Ns + Ni)/2 and ∆N = (Ns − Ni)/2. Under
our hypotheses, we have ∆N � N̄ . Hence the last term
in (10) is in first approximation negligible compared to
the second term, and the integer value of N̄ that mini-
mizes ∆ω is determined independently of ∆N . Then the
optimization problem can be refined by searching for the

integer value of ∆N that minimizes (10) at fixed N̄ . Stud-
ies of tuning properties of double or triply resonant OPO
have shown that the operating modes are grouped into
clusters, each cluster consisting of a sequence of adjacent
modes [16,17]. In (10), N̄ indicates the cluster and ∆N
distinguishes between adjacent modes inside the cluster.

An important consequence of (10) is that ∆ω can at
best be adjusted in steps of |δωs − δωi|. With such steps,
the frequency mismatch ∆ω can always be made to be-
long to the interval [− |δωs−δωi|

2 , |δωs−δωi|
2 ] but cannot be

brought closer to zero. This minimal ∆ω corresponds to
the mode pair chosen by the OPO. By considering the
worst case, the maximal frequency mismatch that can be
reached is

∆ωmax =
|δωs − δωi|

2
, (11)

which agrees with the general expression of the detun-
ing given in [16]. As the OPO is pulled away from an
exact cavity resonance by increasing the cavity length,
the frequency mismatch will increase up to the maximal
value given by (11), at which point there will be an op-
erating mode with a lower mismatch to which the OPO
will switch. This phenomenon is well known as mode hop-
ping [16,17].

Before (11) can be compared with the bound found for
the Hopf bifurcation in Section 2, it has to be expressed
in the same units. The detunings used in equations (2)
are normalized so that half-height width of the cavity res-
onance is 2. Since the cavity finesse F is defined so that
the half-height width is δω/F , we have

∆s = 2Fs
∆ωs

δωs
, (12a)

∆i = 2Fi
∆ωi

δωi
. (12b)

As mentioned before, ∆s and ∆i are not independent
in the stationary regime but obey the simple relation
∆s = ∆i as a consequence of energy and photon number
conservation [20]. Taking into account that ∆ω = ∆ωs +
∆ωi, one obtains from (12):

∆s = ∆i =
2FsFi∆ω

Fiδωs + Fsδωi
. (13)

This expression was derived assuming ωs � ωi, so that we
should fix Fs � Fi for consistency. The maximal value of
the frequency mismatch authorized by mode selection, as
given by equation (11), can thus be rewritten as

∆M
max = Fs

|δωs − δωi|
δωs + δωi

. (14)

Before we can discuss whether the Hopf bifurcation can
be observed in typical experiments, we have to reformu-
late (14) in terms of the experimental configuration.

Given that

δωs,i =
2πc

2(Lcav + (ns,i − 1)lc)
(15)
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where Lcav is the geometric length of the cavity, lc is the
length of the nonlinear crystal, ns,i the indices of the sig-
nal (resp. idler) fields and c is the celerity of light in the
vacuum, (14) can be rewritten as

∆M
max = 2Fs

|δn|lc
[L]

, (16)

where

[L] = 2
(

Lcav +
(

ns + ni

2
− 1
)

lc

)

is the average optical path for the signal and the idler
fields over one round trip in the cavity and

δn =
|ns − ni|

2
.

In the limit case of a monolithic OPO (Lcav = lc), expres-
sion (16) leads to the remarkably simple expression

∆M
max/Fs =

2|δn|
ns + ni

(17)

showing the key role played by crystal birefringence. Ex-
pression (17) yields an absolute upper bound for (16) since
cavity length obviously cannot be smaller than crystal
length.

Note that since δn � ns,i for a standard crystal, ex-
pressions (16) and (17) ensure that the small-detuning
hypothesis of the mean-field approximation is fulfilled for
the signal and idler fields.

We are now in a position to obtain a simple criterion to
determine whether the Hopf bifurcation can be observed
in a given configuration at infinite pump power. Obviously,
we must have

∆H
min < ∆M

max (18)

which, using (6) and (16), and expressing the pump cavity
decay rate as

γ =
Fs

Fp
,

translates into

√
1
Fp

(
1
Fp

+
2
Fs

)
< 2

|δn|lc
[L]

(19)

which is the main result of our paper. Again, (19) sim-
plifies in the monolithic case. A noteworthy feature of in-
equality (19) is the asymmetry in the dependences with
respect to the pump and signal finesse. It is easily seen that
increasing pump finesse is much more effective to have (19)
satisfied. Assuming Fp = 50 and Fs = 500, doubling the
pump finesse decreases the left hand side of (19) by 46%
while doubling the signal finesse only does so by 4%.
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Fig. 2. Solid lines: values of maximal detuning authorized by
mode selection when cavity length is varied between 1.5 cm
and 10 cm. Dashed lines: minimal detuning permitted by the
conditions of the Hopf bifurcation for two different values of γ:
5 and 10.

3.2 Numerical estimates

To get a better understanding of whether the criterion
obtained in Section 3.1 is easily satisfied or not, we now
compute numerical estimates for typical experimental con-
figurations. In previous experiments [12–15,21], we used a
KTP crystal of length lc = 15 mm cut for type-II phase-
matching, with an extraordinary index ne = 1.75 and
an ordinary index no = 1.83. The crystal is enclosed in
a Fabry-Perot cavity delimited by two spherical mirrors
with a radius of curvature of 5 cm. The cavity finesse for
the signal and pump fields are around 500 and 50, respec-
tively.

The most easily adjustable parameter is the geomet-
rical cavity length, which is bounded from below by the
crystal length (1.5 cm) and from above by the concen-
tric condition (∼10 cm). Figure 2 shows the evolution
of the maximal detuning ∆M

max with cavity length. The
main feature is that ∆M

max decreases monotonically with
cavity length, as is easily seen in expression (16). Thus
the most favorable situation will always be obtained in
the “monolithic” configuration where cavity length equals
crystal length. In practice, this configuration cannot be
reached when spherical mirrors are used because of the
size of the crystal mount, but the shortest feasible cavity
length (3 cm in our experiments) should be sought.

In our experiment, γ = Fs/Fp = 10, from which we
can compute the value ∆H

min =
√

γ(γ + 2) of the minimal
detuning necessary to obtain the Hopf bifurcation. This
value does not depend on cavity length and is represented
in Figure 2 by the upper dashed horizontal line. We see
that there is hardly a configuration where ∆H

min < ∆M
max.

In this configuration, the Hopf bifurcation cannot be ob-
served regardless of pump power because mode hopping
prevents to reach sufficiently high detunings.
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In order to lower ∆H
min, assume now that pump finesse

is increased to 100 so that γ decreases to 5. This cor-
responds to the lower horizontal dashed line in Figure 2.
There is now a range of cavity lengths where ∆H

min < ∆M
max

as shown by the black area between the two curves.
If Fs and Fp are increased simultaneously keeping

γ constant, ∆M
max will increase while ∆H

min remains un-
changed, and the instability region will also widen.

3.3 Conclusion

In this section we have taken into account the fact that
the signal frequency detuning is not a fixed parameter
but is determined by the operating frequency chosen by
the OPO so as to minimize this detuning. As a result
the signal frequency detuning is bounded from above by
the mode hopping phenomenon. Since signal detunings at
which periodic behaviors appear are bounded from below,
the Hopf bifurcation can only be observed if ∆H

min < ∆M
max.

Our analysis has shown that even in the ideal case where
infinite pump power is available, mode hopping can pre-
vent from reaching detunings sufficiently large to observe
the Hopf bifurcation of the monomode model.

The numerical estimates obtained for the configuration
used in our previous experiments explain why we could
not observe the Hopf bifurcation in this setup. In order
to obtain instabilities, one should take into account that
∆H

min depends on the ratio of signal and pump finesse while
∆M

max is proportional to signal finesse. More generally, the
finesse should satisfy inequality (19). As will be discussed
in Section 5, the theoretically most favorable configura-
tions are extremely difficult to build experimentally. In all
cases, cavity should be made as short as possible.

It remains to be checked that in cases where the in-
stability can be observed, it persists when pump power is
limited. We do so in Section 4.

4 Numerical investigations at finite pump
power

So far, our analysis has assumed infinite pump power,
which has allowed us to obtain simple analytical formu-
las such as (19) to decide whether the Hopf bifurcation
is screened by mode hopping or not. We now have to de-
termine how good this approximation is in the real-life
situation where only finite pump power is available and
if conclusions drawn from our theoretical analysis remain
relevant.

At finite pump power, whether the Hopf bifurcation
can be observed no longer depends only on inequality (4)
but also on whether the Hopf threshold (5) can be reached
given available pump power. Because expression (5) is
much more complicated than inequality (4), we restrict
ourselves here to a numerical exploration of the detun-
ing ranges where periodic behavior is found and compare
our results with predictions from the infinite pump power
analysis. This exploration is carried out for several val-
ues of the cavity finesse, other parameters being chosen so

as to match our previous experiments [12–15,21]. As we
shall see, it will allow us to conclude that pump power is
not a limiting factor with commonly available pump lasers
and that the criteria derived in the infinite pump power
analysis remain relevant.

A few general observations are in order before we
present our numerical results. The relevant criterion is
whether the minimum detuning ∆H

min at which Hopf bi-
furcation occurs is smaller than the larger detuning ∆M

max

allowed by mode hopping. Thus it is interesting to com-
ment on how these bounds evolve when pump power is
limited.

Regarding onset of periodic behavior, it should be re-
called that inequality (4) holds regardless of pump power,
that equality can be achieved only for infinite pump power
and that otherwise the Hopf threshold (5) yields a more
stringent condition than (4) on the detunings. As a result,
the instability regions are systematically shifted towards
higher values of the detunings, leading to an increase of
∆H

min compared to expression (6).
As for the maximal value ∆M

max of the detuning al-
lowed by mode hopping [Eq. (14)], it does not depend
on pump power as it is obtained by considering the fre-
quency combs of the cavity resonances. However a limi-
tation that has to be taken into account at finite pump
power is that if the OPO is below parametric emission
threshold at ∆s = ∆M

max, then the latter bound certainly
cannot be achieved and the actual bound will be lower
(the stationary ON state must exist for the bifurcation to
occur). Using the expression for parametric threshold (3),
the expression for the maximal signal detuning value be-
comes

∆MT
max = min

(

∆M
max,

√
E2

1 + ∆2
p

− 1

)

(20)

where E is the pump parameter and ∆p is the pump de-
tuning. The compatibility between the values of the mini-
mal detuning at which periodic behavior occurs and of the
maximal detuning at which stationary parametric emis-
sion occurs is now more difficult to analyze because both
depend on pump detuning. However, it is easy to see that
as pump power is decreased, the former can only increase
and the latter only decrease so that the Hopf bifurcation
is necessarily harder to observe in the finite pump power
case. We now assess by how much by carrying out numer-
ical simulations.

The phase diagrams in Figure 3 shows in black the
regions in the (∆p, ∆s) parameter plane where periodic
behavior is found for different values of the cavity finesse,
the values of the remaining parameters being fixed so as
to match our experiments [12–15,21]. For each parameter
set, the dynamical regime is classified as periodic when

– inequality (4) is satisfied, and
– EH(∆p, ∆s) < Emax(Fp,Fs)

where Emax(Fp,Fs) is the maximum pump parame-
ter corresponding to the pump power available in our
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Fig. 3. Phase diagrams in the
(∆p, ∆s) plane showing the insta-
bility regions as black areas for
different values of the finesse of
the pump (Fp) and of the signal
(Fs) field: (a) Fp = 50, Fs = 500,
(b) Fp = 100, Fs = 500, (c) Fp =
100, Fs = 1000, (d) Fp = 500,
Fs = 1000. Solid curves delimit
areas above parametric emission
threshold. Dashed lines indicate
where (4) is an equality and de-
limit unstable areas in the infinite
pump power approximation. Dot-
ted horizontal lines indicate the
maximal detuning value allowed
by mode hops. In (a), the dot-
ted and dashed line shows a possi-
ble path followed by detunings as
cavity length is scanned. The dis-
continuity occurring as the path
reaches the horizontal dotted line
corresponds to a mode hop.

experimental conditions (4 W)1. Since the unstable zones
are enclosed inside the regions where parametric emission
occur and the instability regions at infinite pump power,
the boundaries of these regions, which can be computed
analytically, are also shown in Figure 3 so that we can es-
timate how well they approximate the numerical results.
In order to make meaningful comparisons between setups
corresponding to different values of the finesse, the do-
mains of variations of the pump and signal detunings are
chosen so that ∆s,p ∈ [−Fs,p/(10π),Fs,p/(10π)]. This cor-
responds in each case to the same variation of the physical
cavity length (∆L = λ/40π) and thus there is no differ-
ence in the scans from an experimental point of view. Since
|∆s,p| � 2Fs,p, this also ensures that the small-detuning
hypothesis of the mean-field model is satisfied.

Figure 3a shows that for parameter values correspond-
ing to our experimental setup, periodic behavior does not
occur, explaining why we do not observe the Hopf bifur-
cation in this setup. It also shows that the boundaries of

1 Emax(Fp,Fs) =
√Pmax/Pth(Fp,Fs) with Pmax the max-

imum pump power available and Pth(Fp,Fs) the pump power
at threshold. It is known that γpPth(Fp,Fs) ∝ γ2

sγ2
p [17,

23] and consequently
E2

max(Fp,Fs)

FpF2
s

= cst. In our experimental

setup, Fp0 = 45, Fs0 = 550, Pmax � 4 W and Pth(Fp0,Fs0) �
10 mW, which leads to

E2
max(Fp,Fs)

FpF2
s

� 400.

the unstable region at infinite pump power are located
outside the central band where ∆s ∈ [−∆M

max, ∆
M
max] and

thus that mode hopping prevents the bifurcation from be-
ing observed in this configuration even if infinite pump
power was available. The proximity of the two curves cor-
responding to parametric threshold and bifurcation at in-
finite pump power probably explains why no instability
can be observed.

In contrast with Figure 3a, Figures 3b to 3d display
larger and larger instability zones as cavity finesse are in-
creased. While in Figure 3b the intersection of the unsta-
ble region with the central band of allowed signal detun-
ings is very small, it becomes sizable in Figure 3d. More
precisely, the fraction of the central band occupied by un-
stable regions is 1.6% in Figure 3b, 3.5% in Figure 3c and
17% in Figure 3d. These numbers are meaningful as prob-
ability estimates if we assume that there is no correlation
between the signal and pump detunings on average, i.e.,
that the entire allowed band may be explored over several
experiments. It should be noted that during a scan of cav-
ity length through a single resonance of the pump, pump
and signal detuning will vary jointly as illustrated in Fig-
ure 3a and that this may affect the probability of hitting
the unstable zone. However, it is expected that there is no
relation between paths followed in the (∆p, ∆s) plane for
different pump resonances so that no part of the allowed
band should remain inaccessible.
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Examination of Figures 3a–3d shows that although in-
creasing finesse globally makes it easier to observe the
Hopf bifurcation, finesse for the pump and signal fields
have different influences. The twofold increase in Fp be-
tween Figures 3a and 3b clearly modifies the phase dia-
gram much more than the twofold increase in Fs between
Figures 3b and 3c. Similarly, increasing Fp from 100 to
500 is critical to have a significant probability of observ-
ing the Hopf bifurcation. This is consistent with the dis-
cussion of criterion (19) in Section 3 which showed that
increasing pump finesse was much more effective than in-
creasing signal finesse. However increasing pump finesse is
extremely difficult from a practical point of view, as we
discuss in Section 5. Interestingly, it was similarly noted in
reference [10] that increasing pump finesse while keeping
signal finesse allowed one to observe an hexagonal trans-
verse pattern at lower signal detunings.

An important conclusion that can be drawn from the
numerical exploration summarized in Figures 3a–3d is
that except in Figure 3a, the theoretical analysis at infinite
pump power provides a very good approximation of the
finite pump power case, all the better as finesse are higher
and as observing the Hopf bifurcation becomes more plau-
sible. Indeed the instability zones are tightly delimited by
the boundaries obtained at infinite pump power and by
the parametric threshold line except for larger pump de-
tunings. In particular, the agreement is excellent at the
tip of the unstable zones, near the point of minimal signal
detuning. This makes us confident that for pump lasers
currently available, the criterion obtained in (19) is ef-
fective in assessing the probability of occurrence of the
Hopf bifurcation. It also shows that pump power is not a
limiting factor as when there is a nonempty intersection
between the unstable zone and the central band of allowed
detunings, its area only marginally increases from the fi-
nite to the infinite pump case, mostly in regions far from
the minimum detuning value.

To conclude, numerical calculations at finite pump
power show that while the Hopf bifurcation becomes
harder to observe than in the infinite pump power case,
the mode hopping phenomenon remains the main limiting
factor by limiting the range of values signal detuning can
take. In order to obtain experimental evidence of the bi-
furcation, building a dedicated setup would be much more
effective than increasing pump power. However, there are
some experimental difficulties in doing so, which we dis-
cuss in Section 5.

5 Experimental considerations

The theoretical analysis at infinite pump power of Sec-
tion 3 and the numerical computations at finite pump
power of Section 4 have suggested that the Hopf bifur-
cations of the monomode mean-field model might be ob-
servable in some configurations. In this section, we discuss
the feasibility of an experimental setup specially designed
for evidencing the bifurcation.

Some parameters are easily optimized using the find-
ings of Sections 3 and 4. As discussed in Section 3.2, cav-

ity should be as short as possible and in this respect a
monolithic configuration would be optimal. Then, crys-
tal birefringence should be chosen as large as possible [see
Eq. (17)]. However this may not be an option as brifrigence
is primarily used to achieve phase-matching in the desired
operating range. Of course, pump power should be as large
as possible, but our analysis has shown that there were
modest returns in increasing it much beyond that offered
by currently available pump lasers. The two parameters
left for setup optimization are then the signal and pump
cavity finesse. Criterion (19) indicates that those finesse,
and especially the pump finesse, should be taken as large
as possible.

However, cavities of very high finesse are critical to
align and are very sensitive to fluctuations. For example,
a change of δL of the cavity length will induce a variation
of δ∆ = 4FδL/λ of the detuning, where λ is the optical
wavelength. For λ = 1064 nm and F = 1000, a fluctuation
δL = 5 Å of the cavity length will induce a variation of
the detuning δ∆ = 2, corresponding to full-width of the
resonance. The length of the cavity must thus be adjusted
carefully and maintained constant to within less than a
few angströms.

This stability problem is all the more critical when
thermal effects are taken into account. In our configura-
tion, it has been shown that thermal effects can induced
complex dynamical behaviors [12,13] during which cavity
length can be spontaneously swept by a few nanometers.
Such instabilities were observed even at incident pump
powers around 500 mW [12], which for a pump finesse
of 45 corresponds to an intracavity pump power of about
6.5 W. For 4 W of incident pump power and a finesse of
500, intracavity pump power would reach ∼640 W at res-
onance and thermal effects would then be a hundred times
as strong. For illustration purposes, let us recall that the
only chaotic regime reported so far in an TROPO was
observed in a situation where cavity length could not be
made stationary [15], although the configuration was stan-
dard.

Another adverse influence of pump absorption in the
crystal is that it puts a limit on the highest finesse achiev-
able. In our setup, for example, pump absorbtion in the
1.5 cm-long crystal is 2% cm−1 which implies that pump
finesse cannot be higher than about 100 even if perfectly
reflecting mirrors were used. Except for crystals with ex-
ceptional low absorption, high values of the pump cavity
finesse such as 500 appear to be completely unrealistic.

Apart from the previous remarks which hold for all
systems featuring an absorbing material enclosed in a res-
onant cavity, specific restrictions on the finesse are to be
considered for a TROPO, inside which several fields must
be simultaneously resonant. Generally cavity finesse in an
experimental TROPO setup are chosen so that Fp � Fs.
It ensures that numerous resonances of the signal field
are found inside the wider resonance of the pump field,
in other terms that several mode hops occur before OPO
falls below threshold. This allows one to only consider co-
incidences of signal and idler cavity modes. For very high
cavity finesse of the pump, the mode with smallest signal
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detuning might very well be below threshold because of
a large pump detuning. In fact, the analysis of Section 3
should then be reworked and reformulated in terms of co-
incidences of three resonances instead of two. It is not
certain that this more complicated problem admits solu-
tions.

To conclude, an OPO designed in order to observe the
Hopf bifurcation should have a short cavity (e.g., mono-
lithic setup), high birefringence and pumping rate. The
pump cavity finesse should be as high as possible. Under
these conditions, however, an OPO would be very diffi-
cult to operate and to stabilize on an operating point.
Even then, the numerical analysis of Section 4 indicates
that unstable zones would remain small compared to the
range of operating parameters. This casts serious doubts
on the experimental observability of the Hopf bifurcation
of the monomode mean-field model.

6 Conclusion

In this paper we have raised the issue that contrary to
what is commonly assumed in theoretical studies of the
dynamics of optical parametric oscillators, signal detuning
is not a parameter that can be arbitrarily fixed, as its value
results from a complex selection process. Thus, detuning
limitation due to mode hopping may affect the occurrence
of dynamical instabilities occurring at high values of the
detuning. As a simple example, we analyzed under which
conditions the Hopf bifurcation leading to periodic behav-
ior in the monomode mean-field model of a triply resonant
OPO can be observed.

We first showed that signal detuning must reach a min-
imal value for the bifurcation to occur, even at infinite
pump power. We then described how the mechanism of
mode hopping restraints the values signal detuning can
take and we gave an analytical expression of the maximal
detuning allowed by mode hopping. By comparing the two
bounds so obtained, we showed that they are incompatible
in many configurations, showing that finite pump power
is not necessarily the limiting factor for observing this in-
stability. This was confirmed in numerical computations
of instability domains carried out at a finite pump power
corresponding to our experimental configuration, in which
we observed that most of the unstable domains are inac-
cessible because of mode hopping. We found that pump
finesse is a critical parameter that should be made as large
as possible in order to observe the Hopf bifurcation. How-
ever experimental setups designed for this purpose should
most certainly be extremely difficult to operate.

For the sake of simplicity, our derivation of the maxi-
mal detuning allowed by mode hopping relied on two main
hypotheses. One was that signal and idler have frequen-
cies close to 1:1 ratio but experience different indices, as in
our type-II experiments. Generalization to other frequency
ratios in the type-II configuration should be straightfor-
ward and is not expected to modify the conclusions of
the present work. Type-I OPOs near frequency degener-
acy have more complex tuning properties and should be

analyzed separately. The other hypothesis was that para-
metric gain can be considered constant along a frequency
domain containing many longitudinal modes so that the
lowest possible detuning is always selected. If that is not
the case, then values of signal detuning higher than pre-
dicted may be obtained and our analysis would have to be
adapted. However, it does not seem likely that our con-
clusions would be modified a lot.

An open question is whether conclusions drawn for
the Hopf bifurcation of the monomode mean-field model
also hold for other theoretical predictions of temporal or
pattern-forming instabilities in doubly or triply optical
parametric oscillators. Such instabilities have often been
reported for high values of the pumping rate, compara-
ble pump and signal finesse, and for values of signal de-
tuning generally above the cavity resonance half width
(see, e.g., references [6–9]). Since pump finesse is usually
much smaller that signal finesse in realistic experimen-
tal setups, it would be interesting to determine whether
decreasing pump finesse increases the minimum detuning
value at which these instabilities appear, as is the case
for the Hopf instability we have studied in this paper and
as it seems to be for other instabilities (see e.g., Fig. 1
in [10]). If this is so, their observability would then also
be affected by detuning limitations due to mode hopping
rather than by finiteness of pump power. A detailed com-
parison of instability thresholds in detuning space with
the maximum values allowed by mode hopping is there-
fore needed to assess the experimental relevance of these
theoretical predictions.

Thus, mode hopping is not only a nuisance for stabi-
lizing and tuning OPOs but also for using them as tools
to study complex dynamical behavior. However, the con-
clusion of our study may not be as pessimistic as it seems,
as it provides guidelines for designing experimental setups
where the Hopf instability could be finally observed, such
as with a very short cavity.
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